Package: profoc (via r-universe)

August 23, 2024

Type Package

Title Probabilistic Forecast Combination Using CRPS Learning
Version 1.3.2

Date 2024-03-25

Description Combine probabilistic forecasts using CRPS learning
algorithms proposed in Berrisch, Ziel (2021) <arXiv:2102.00968>
<doi:10.1016/j.jeconom.2021.11.008>. The package implements
multiple online learning algorithms like Bernstein online
aggregation; see Wintenberger (2014) <arXiv:1404.1356>.
Quantile regression is also implemented for comparison
purposes. Model parameters can be tuned automatically with
respect to the loss of the forecast combination. Methods like
predict(), update(), plot() and print() are available for
convenience. This package utilizes the optim C++ library for
numeric optimization <https://github.com/kthohr/optim>.

License GPL (>=3)
Encoding UTF-8
Depends R (>=4.3.0)

Imports Rcpp (>= 1.0.5), Matrix, abind, methods, lifecycle, generics,
tibble, ggplot2

LinkingTo Rcpp, ReppArmadillo (>=0.10.7.5.0), ReppProgress, splines2
(>=0.4.4), rcpptimer (>=1.1.0)
URL https://profoc.berrisch.biz, https://github.com/BerriJ/profoc

BugReports https://github.com/BerriJ/profoc/issues
RoxygenNote 7.3.1

Language en-US

Suggests testthat (>= 3.0.0), gamlss.dist, knitr, rmarkdown, dplyr
Config/testthat/edition 3

Roxygen list(markdown = TRUE)

VignetteBuilder knitr

https://arxiv.org/abs/2102.00968
https://doi.org/10.1016/j.jeconom.2021.11.008
https://arxiv.org/abs/1404.1356
https://github.com/kthohr/optim
https://profoc.berrisch.biz
https://github.com/BerriJ/profoc
https://github.com/BerriJ/profoc/issues

2 profoc-package

Repository https://berrij.r-universe.dev

RemoteUrl https://github.com/berrij/profoc

RemoteRef HEAD

RemoteSha c84315dca8d455fddclaa9d2bcc3c2d51¢972441

Contents
profoc-package 2
autoplot.batch L 3
autoplot.online L 4
batch e 4
conline e 7
init_experts_liSt oL 8
make_basis_matsS e e e e e e e 8
make_hat_ mats L L e e 9
make knots L 10
online 11
oracle e e e 15
penalty e e e 16
plotbatch e 17
plotonline e 18
post_process_model e e 18
predict.online 19
printbatcho 19
printonline L e e e e e e 20
splines2_basis 20
summary.online L e e 21
tidy.online.experts_loss 21
tidy.online.forecaster_loss 22
tidy.online.predictions L e e 22
tidy.online.weights 23
update.online L e 23

Index 25

profoc-package Package Info
Description

Use multiple online-aggregation algorithms to combine probabilistic forecasts using CRPS Learn-
ing as described in Berrisch, Ziel: "CRPS Learning", 2021. The primary function of this package
is called online.

doi:10.1016/j.jeconom.2021.11.008

https://doi.org/10.1016/j.jeconom.2021.11.008

autoplot.batch

Details

Index: This package was not yet installed at build time.

Author(s)

Maintainer: Jonathan Berrisch mailto: Jonathan@errisch.biz

Co-Author: Florian Ziel

References

Berrisch, Ziel: "CRPS Learning", 2021
doi:10.1016/j.jeconom.2021.11.008
doi:10.48550/arXiv.2102.00968

See Also

Source Code: https://github.com/BerriJ/profoc

BugReports: https://github.com/BerriJ/profoc/issues

autoplot.batch Autoplot method for batch models

Description

Plots the most recent weights in each quantile using ggplot2.

Usage
S3 method for class 'batch'
autoplot(object, ...)

Arguments
object Object of class inheriting from ’batch’

further arguments are ignored

mailto:Jonathan@Berrisch.biz
https://doi.org/10.1016/j.jeconom.2021.11.008
https://doi.org/10.48550/arXiv.2102.00968
https://github.com/BerriJ/profoc
https://github.com/BerriJ/profoc/issues

4 batch

autoplot.online Autoplot method for online models

Description

Plots the most recent weights in each quantile using ggplot2.

Usage
S3 method for class 'online'
autoplot(object, ...)

Arguments
object Object of class inheriting from *online’

further arguments are ignored

batch Probabilistic Forecast Combination - Batch

Description

Returns predictions and weights calculated by sequential numeric optimization. The optimization
is done stepwise, always calculating a one-step-ahead forecast.

[Experimental]

Usage

batch(
Y,
experts,
tau = 1:dim(experts)[2]/(dim(experts)[2] + 1),
affine = FALSE,
positive = FALSE,
intercept = FALSE,
debias = TRUE,
lead_time = 0,
initial_window = 30,
rolling_window = initial_window,
loss_function = "quantile”,
loss_parameter = 1,
qw_crps = FALSE,
b_smooth = list(knots = length(tau), mu =0.5, sigma =1, nonc = 0, tailweight
= 1, periodic = FALSE),
p_smooth = list(knots = length(tau), mu = 0.5, sigma =1, nonc = 0, tailweight =1, deg

1, deg

batch

=1, ndiff
forget = 0,

soft_threshold
hard_threshold

fixed_share

= 1.5, lambda = -Inf, periodic = FALSE),

-Inf,
-Inf,

o,

parametergrid_max_combinations = 100,
parametergrid = NULL,
forget_past_performance = 0,
allow_quantile_crossing = FALSE,

trace = TRUE

Arguments

y

experts
tau
affine
positive

intercept

debias

lead_time

initial_window

rolling_window

loss_function
loss_parameter
gw_crps
b_smooth

p_smooth

forget

A numeric matrix of realizations. In probabilistic settings a matrix of dimension
Tx1, in multivariate settings a TxD matrix. In the latter case, each slice of the
expert’s array gets evaluated using the corresponding column of the y matrix.

An array of predictions with dimension (Observations, Quantiles, Experts).

A numeric vector of probabilities.

Defines whether weights are summing to 1 or not. Defaults to FALSE.
Defines if a positivity constraint is applied to the weights. Defaults to FALSE.

Determines if an intercept is added, defaults to FALSE. If true, a new first expert
is added, always predicting 1.

Defines whether the intercepts weight is constrained or not. If TRUE (the de-
fault), the intercept weight is unconstrained. Only affects the results if affine and
or positive is set to TRUE. If FALSE, the intercept is treated as an expert.

offset for expert forecasts. Defaults to 0, which means that experts forecast t+1
at t. Setting this to h means experts predictions refer to t+1+h at time t. The
weight updates delay accordingly.

Defines the size of the initial estimation window.

Defines the size of the rolling window. Defaults to the value of initial_window.
Set it to the number of observations to receive an expanding window.

non

Either "quantile", "expectile" or "percentage".
Optional parameter scaling the power of the loss function.

Decides whether the sum of quantile scores (FALSE) or the quantile weighted
CRPS (TRUE) should be minimized. Defaults to FALSE. Which corresponds to
Berrisch & Ziel (2021)

A named list determining how the B-Spline matrices for probabilistic smoothing
are created. Default corresponds to no probabilistic smoothing. See details.

A named list determining how the hat matrices for probabilistic P-Spline smooth-
ing are created. Default corresponds to no smoothing. See details.

Adds an exponential forgetting to the optimization. Past observations will get
less influence on the optimization. Defaults to 0, which corresponds to no for-
getting.

6 batch

soft_threshold If specified, the following soft threshold will be applied to the weights: w =
sgn(w)*max(abs(w)-t,0) where t is the soft_threshold parameter. Defaults to -
inf, which means that no threshold will be applied. If all expert weights are
thresholded to 0, a weight of 1 will be assigned to the expert with the highest
weights prior to thresholding. Thus soft_threshold = 1 leads to the *follow the
leader’ strategy if method is set to "ewa".

hard_threshold If specified, the following hard thresholding will be applied to the weights: w =
w*(abs(w)>t) where t is the threshold_hard parameter. Defaults to -inf, which
means that no threshold will be applied. If all expert weights are thresholded to
0, a weight of 1 will be assigned to the expert with the highest weight prior to
thresholding. Thus hard_threshold = 1 leads to the ’follow the leader’ strategy
if method is set to "ewa".

fixed_share Amount of fixed share to be added to the weights. Defaults to 0. 1 leads to
uniform weights.

parametergrid_max_combinations
Integer specifying the maximum number of parameter combinations that should
be considered. If the number of possible combinations exceeds this threshold,
the maximum allowed number is randomly sampled. Defaults to 100.

parametergrid User supplied grid of parameters. Can be used if not all combinations of the
input vectors should be considered. Must be a matrix with 13 columns (on-
line) or 12 columns batch with the following order: basis_knot_distance, ba-
sis_knot_distance_power, basis_deg, forget_regret, soft_threshold, hard_threshold,
fixed_share, p_smooth_lambda, p_smooth_knot_distance, p_smooth_knot_distance_power,
p_smooth_deg, p_smooth_ndiff, gamma.

forget_past_performance
Share of past performance not to be considered, resp. to be forgotten in ev-
ery iteration of the algorithm when selecting the best parameter combination.
Defaults to 0.

allow_quantile_crossing
Shall quantile crossing be allowed? Defaults to false, which means that predic-
tions are sorted in ascending order.

trace Print a progress bar to the console? Defaults to TRUE.

Details

batch selects various parameters automatically based on the past loss. For this, the parameters
smoothing parameters (see below) can be specified as numeric vectors containing values to consider.

This package offers two options for smoothing (Basis Smoothing and P-Splines). Parameters
b_smooth and p_smooth take named lists to create the corresponding basis and hat matrices. The
arguments are: knots which determines the number of knots to be created, mu, sigma, sigma, nonc,
tailweight correspond to to parameters of the beta distribution, which defines how the knots are
#distributed (see ?make_knots for details) the defaults will create an equidistant knot sequence,
deg sets the degree of the spline function and also influences how many outer knots will be used
and periodic which determines whether the spline basis will be periodic. It’s possible to provide
vectors of values for each of these parameters. In that case, all parameter combinations will be
used to create the respective matrices and all candidates will be considered during online-learning.
In addition to the inputs mentioned before p_smooth requires ndiff which determines the degree

conline

of differentiation applied to the basis-matrix (can take any value between and including 1 and 2),
lambda which determines the degree of penalization applied to the smoothing, higher values will
give smoother weight functions. As for the other parameters, it is possible to provide multiple

values.

Value

Returns weights and corresponding predictions. It is possible to impose a convexity constraint to

the weights by setting affine and positive to TRUE.

Examples

Not run:

T <- 50 # Observations

N <- 2 # Experts

P <- 9 # Quantiles
prob_grid <- 1:P / (P + 1)

y <= rnorm(n = T) # Realized
experts <- array(dim = c(T, P, N)) # Predictions
for (t in 1:T) {
experts[t, , 1] <- gnorm(prob_grid, mean = -1, sd = 1)
experts[t, , 2] <- gnorm(prob_grid, mean = 3, sd = sqrt(4))
}

model <- batch(

y = matrix(y),

experts = experts,

p_smooth = list(lambda = 10)
)

print(model)
plot(model)
autoplot(model)

End(Not run)

conline

Create an conline Object from the conline C++ Class

Description

Allows for the creation of a Online Object in C++ from R using the C++ conline class.

Value

A conline object from the C++ conline Class.

Examples

conline_obj <- new(conline)

8 make_basis_mats

init_experts_list Create experts list to be used in conline class

Description

This function works in conjunction with the conline class. It takes a matrix of experts and a matrix
of outcomes and returns a list of experts which fulfills all properties that are needed for passing it
to the an instance of conline.

Usage

init_experts_list(experts, y, output_with_names = FALSE)

Arguments
experts array of predictions with dimension T x D x P x K (Observations x Variables x
Quantiles x Experts) or Tx Dx Kor Tx P x K.
y A matrix of outcomes with dimension T x D.

output_with_names
Defaults to FALSE. If TRUE, the function returns a list with the experts list, the
names of the variables (dnames) and the names of the experts (enames).

make_basis_mats Create a List of Basis Matrices

Description

This function creates a list of basis matrices and the corresponding parameters. It is used in
online() to create the basis matrices for basis smoothing.

Usage

make_basis_mats(
X,
n = length(x),
mu = 0.5,
sigma = 1,
nonc = 0,
tailw = 1,
deg = 1,
periodic = FALSE,
idx = NULL,
params = NULL

make_hat_mats

Arguments
X The predictor variable
n Number of knots
mu Beta distribution location parameter
sigma Beta distribution scale parameter
nonc Beta distribution noncentrality parameter
tailw Tailweight
deg Degree of splines
periodic Create periodic basis
idx make_basis_mats() will create a grid containing all combinations of the pa-
rameters. If idx is set, this grid will be subsetted to the rows specified by idx.
params Instead of the arguments above, a grid (data.frame or named matrix) of parame-
ters can be passed directly.
make_hat_mats Create a List of Hat Matrices
Description

This function creates a list of hat matrices and the corresponding parameters. It is used in online()
to create the hat matrices for penalized smoothing.

Usage

make_hat_mats(

X,

n = length(x),
mu = 0.5,

sigma =
nonc =
tailw =
deg = 1
ndiff =
lambda

1,

0,

1,

1.5,

= -Inf,

periodic = FALSE,
idx = NULL,
params = NULL

10 make_knots
Arguments
X The predictor variable
n Number of knots
mu Beta distribution location parameter
sigma Beta distribution scale parameter
nonc Beta distribution noncentrality parameter
tailw Tailweight
deg Degree of splines
ndiff Sets the degree of the differencing matrix for creating the penalty
lambda Penalty parameter (higher values lead to higher penalty)
periodic Create periodic penalty
idx make_hat_mats() will create a grid containing all combinations of the parame-
ters. If idx is set, this grid will be subsetted to the rows specified by idx.
params Instead of the arguments above, a grid (data.frame or named matrix) of parame-
ters can be passed directly.
make_knots Create a vector of knots for splines
Description

This function creates a knot vector for splines. The knots are distributed according to a beta dis-
tribution. The first input defines the number of inner knots. The total number of knots is n + 2 *

order.

Usage

make_knots(n, mu = 0.5, sig = 1, nonc = @, tailw =1, deg = 1)

Arguments

n

mu
sig
nonc
tailw

deg

Number of knots

Beta distribution location parameter
Beta distribution scale parameter

Beta distribution noncentrality parameter
Tailweight

Degree of splines

online 11

online Probabilistic Forecast Combination - Online

Description

Returns predictions and weights calculated by online-learning algorithms using CRPS Learning.

[Stable]

Usage

online(

Y,

experts,

tau,

lead_time = 0,

loss_function = "quantile”,

loss_parameter = 1,

loss_gradient = TRUE,

method = "bewa",

b_smooth_pr = list(knots =P, mu=0.5, sigma =1, nonc = 0, tailweight
periodic = FALSE),

p_smooth_pr = list(knots =P, mu=0.5, sigma =1, nonc = 0, tailweight =1, deg=1,
ndiff = 1.5, lambda = -Inf, periodic = FALSE),

b_smooth_mv = list(knots =D, mu=0.5, sigma =1, nonc = 0@, tailweight =1, deg =1
periodic = FALSE),

p_smooth_mv = list(knots =D, mu=0.5, sigma =1, nonc =0, tailweight =1, deg =1
ndiff = 1.5, lambda = -Inf, periodic = FALSE),

forget_regret = 0,

soft_threshold = -Inf,

hard_threshold = -Inf,

fixed_share = 0,

gamma = 1,

parametergrid_max_combinations = 100,

parametergrids = list(general = NULL, b_smooth_pr = NULL, p_smooth_pr = NULL,
b_smooth_mv = NULL, p_smooth_mv = NULL),

forget_past_performance = 0,

save_past_performance = FALSE,

save_predictions_grid = FALSE,

allow_quantile_crossing = FALSE,

1, deg =1,

init = NULL,
loss = NULL,
regret = NULL,
trace = TRUE,

get_timings = FALSE

12

Arguments

y

experts
tau

lead_time

loss_function
loss_parameter
loss_gradient
method
b_smooth_pr
p_smooth_pr
b_smooth_mv
p_smooth_mv

forget_regret

soft_threshold

hard_threshold

fixed_share

gamma

online

A numeric matrix of realizations. In probabilistic settings a matrix of dimension
Tx1, in multivariate settings a TxD matrix. In the latter case, each slice of the
expert’s array gets evaluated using the corresponding column of the y matrix.

An array of predictions with dimension T x D x P x K (Observations x Variables
x Quantiles x Experts) or Tx D x Kor T x P x K.

A numeric vector of probabilities.

offset for expert forecasts. Defaults to 0, which means that experts forecast t+1
at t. Setting this to h means experts predictions refer to t+1+h at time t. The
weight updates delay accordingly.

non

Either "quantile", "expectile" or "percentage".
Optional parameter scaling the power of the loss function.

Determines if a linearized version of the loss is used.

non

One of "boa", "bewa", "ml_poly" or "ewa". Where "bewa" refers to a mixture of
boa and ewa, including the second order refinement of boa, but updating weights
with the simple exponential weighting.

A named list determining how the B-Spline matrices for probabilistic smoothing
are created. Default corresponds to no probabilistic smoothing. See details.

A named list determining how the hat matrices for probabilistic P-Spline smooth-
ing are created. Default corresponds to no smoothing. See details.

A named list determining how the B-Spline matrices for multivariate smoothing
are created. Default corresponds to no probabilistic smoothing. See details.

A named list determining how the hat matrices for probabilistic P-Spline smooth-
ing are created. Default corresponds to no smoothing. See details.

Share of past regret not to be considered, resp. to be forgotten in every iteration
of the algorithm. Defaults to 0.

If specified, the following soft threshold will be applied to the weights: w =
sgn(w)*max(abs(w)-t,0) where t is the soft_threshold parameter. Defaults to -
inf, which means that no threshold will be applied. If all expert weights are
thresholded to 0, a weight of 1 will be assigned to the expert with the highest
weights prior to thresholding. Thus soft_threshold = 1 leads to the *follow the
leader’ strategy if method is set to "ewa".

If specified, the following hard thresholding will be applied to the weights: w =
w*(abs(w)>t) where t is the threshold_hard parameter. Defaults to -inf, which
means that no threshold will be applied. If all expert weights are thresholded to
0, a weight of 1 will be assigned to the expert with the highest weight prior to
thresholding. Thus hard_threshold = 1 leads to the *follow the leader’ strategy
if method is set to "ewa".

Amount of fixed share to be added to the weights. Defaults to 0. 1 leads to
uniform weights.

Scaling parameter for the learning rate.

online 13

parametergrid_max_combinations
Integer specifying the maximum number of parameter combinations that should
be considered. If the number of possible combinations exceeds this threshold,
the maximum allowed number is randomly sampled. Defaults to 100.

parametergrids User supplied grids of parameters. Can be used if not all combinations of the
input vectors should be considered. Must be a named list of five matrices. The
matrices in list must be named as: "general”, "b_smooth_pr", "b_smooth_mv",
"p_smooth_pr", "p_smooth_mv". The "general" matrix must contain 11 named
columns: "forget_regret", "soft_threshold", "hard_threshold", "fixed_share", "ba-
sis_pr_idx", "basis_mv_idx", "hat_pr_idx", "hat_mv_idx", "gamma", "loss_share",
"regret_share". The matrices determining the basis smoothing (b_smooth_pr,
b_smooth_mv) must contain the following named columns: n, mu, sigma, nonc,
tailw, deg, periodic. In addition to the columns of the basis smoothing matrices,
the matrices determining the penalized smoothing (p_smooth_pr, p_smooth_mv)
must contain the following columns: diff, lambda. The *_idx columns in the
general matrix determine which row of the corresponding smoothing matrix is
used.

forget_past_performance
Share of past performance not to be considered, resp. to be forgotten in ev-
ery iteration of the algorithm when selecting the best parameter combination.
Defaults to 0.

save_past_performance
Whether or not the past performance w.r.t to the considered parameter grid
should be reported or not. Defaults to FALSE to save memory. Setting it to
TRUE can be memory intensive depending on the data and the considered grid.

save_predictions_grid
Whether or not all predictions w.r.t to the considered parameter grid should be
reported or not. Defaults to FALSE. Setting it to TRUE can be memory intensive
depending on the data and the considered grid.

allow_quantile_crossing
Shall quantile crossing be allowed? Defaults to false, which means that predic-
tions are sorted in ascending order.

init A named list containing "init_weights": Array of dimension DxPxK used as
starting weights. "R0" a matrix of dimension PxK or 1xK used as starting regret.

loss User specified loss array. Can also be a list with elements "loss_array" and
"share", share mixes the provided loss with the loss calculated by profoc. 1
means, only the provided loss will be used. share can also be vector of shares to
consider.

regret User specified regret array. If specific, the regret will not be calculated by profoc.
Can also be a list with elements "regret_array" and "share", share mixes the
provided regret with the regret calculated by profoc. 1 means, only the provided
regret will be used. share can also be vector of shares to consider.

trace Print a progress bar to the console? Defaults to TRUE.

get_timings Whether or not to return timings. Defaults to FALSE. If set to true a dataframe
times will be written to your global environment.

14 online

Details

online selects various parameters automatically based on the past loss. For this, lambda, forget,
fixed_share, gamma, and the smoothing parameters (see below) can be specified as numeric vectors
containing values to consider.

This package offers two options for smoothing (Basis Smoothing and P-Splines). Both options can
be used to smooth the weights over dimension D (covariates) or P (quantiles) or both. Parameters
b_smooth_pr and b_smooth_mv take named lists to create the corresponding basis matrices. The
arguments are: knots which determines the number of knots to be created, mu, sigma, sigma, nonc,
tailweight correspond to to parameters of the beta distribution, which defines how the knots are
#distributed (see ?make_knots for details) the defaults will create an equidistant knot sequence,
deg sets the degree of the spline function and also influences how many outer knots will be used
and periodic which determines whether the spline basis will be periodic. It’s possible to provide
vectors of values for each of these parameters. In that case, all parameter combinations will be
used to create the respective matrices and all candidates will be considered during online-learning.
Parameters p_smooth_pr and p_smooth_mv determine the hat-matrix creation for P-Spline smooth-
ing. In addition to the inputs mentioned before, they require to provide ndiff which determines the
degree of differentiation applied to the basis-matrix (can take any value between and including 1
and 2), lambda which determines the degree of penalization applied to the smoothing, higher values
will give smoother weight functions. As for the other parameters, it is possible to provide multiple
values.

Value

Returns weights and corresponding predictions.

Examples

Not run:

T <- 50 # Observations

N <- 2 # Experts

P <- 9 # Quantiles
prob_grid <- 1:P / (P + 1)

y <= rnorm(n = T) # Realized
experts <- array(dim = c(T, P, N)) # Predictions
for (t in 1:T)
experts[t, , 1] <- gnorm(prob_grid, mean = -1, sd = 1)
experts[t, , 2] <- gnorm(prob_grid, mean = 3, sd = sqrt(4))
3

model <- online(

y = matrix(y),

experts = experts,

tau = prob_grid,

p_smooth_pr = list(lambda = 10)
)

print(model)
plot(model)

oracle 15

new_y <- matrix(rnorm(1)) # Realized
new_experts <- experts[T, , , drop = FALSE]

Update will update the models weights etc if you provide new realizations
model <- update(model, new_y = new_y, new_experts = new_experts)

Predict will expand “model$predictions™ by default
model <- predict(model, new_experts = new_experts, update_model = TRUE)

End(Not run)

oracle Probabilistic Forecast Combination - Oracle

Description

Returns predictions and weights calculated by numeric optimization. The optimization is done in
hindsight. This means all observations are used.

Usage

oracle(y, experts, tau, affine = FALSE,
positive = FALSE, intercept = FALSE, debias = TRUE,

loss_function = "quantile”, loss_parameter = 1, forget = 0)
Arguments
y A numeric matrix of realizations. In probabilistic settings a matrix of dimension

Tx1, in multivariate settings a TxD matrix. In the latter case, each slice of the
expert’s array gets evaluated using the corresponding column of the y matrix.

experts An array of predictions with dimension (Observations, Quantiles, Experts).

tau A numeric vector of probabilities.

affine Defines whether weights are summing to 1 or not. Defaults to FALSE.
positive Defines if a positivity constraint is applied to the weights. Defaults to FALSE.
intercept Determines if an intercept is added, defaults to FALSE. If true, a new first expert

is added, always predicting 1.

debias Defines whether the intercepts weight is constrained or not. If TRUE (the de-
fault), the intercept weight is unconstrained. Only affects the results if affine and
or positive is set to TRUE. If FALSE, the intercept is treated as an expert.

non

loss_function Either "quantile", "expectile" or "percentage".
loss_parameter Optional parameter scaling the power of the loss function.

forget Adds an exponential forgetting to the optimization. Past observations will get
less influence on the optimization. Defaults to 0, which corresponds to no for-
getting.

16 penalty

Value

Returns weights and corresponding predictions. It is possible to calculate the best convex combina-
tion of weights by setting affine and positive to TRUE.

Examples

Not run:

T <- 50 # Observations

N <- 2 # Experts

P <- 9 # Quantiles
prob_grid <- 1:P / (P + 1)

y <= rnorm(n = T) # Realized
experts <- array(dim = c(T, P, N)) # Predictions
for (t in 1:T)
experts[t, , 1] <- gnorm(prob_grid, mean = -1, sd = 1)
experts[t, , 2] <- gnorm(prob_grid, mean = 3, sd = sqrt(4))
3

model <- oracle(
y = matrix(y),
experts = experts

)

End(Not run)

penalty B-Spline penalty

Description

This function calculates the B-Spline basis penalty. It follows the procedure outlined in the paper
by Zheyuan Li, Jiguo Cao, 2022 "General P-Splines for Non-Uniform B-Splines" doi:10.48550/
arXiv.2201.06808. For equidistant knots it coincides with the usual penalty based on the identitiy.
For non-equidistant knots it is a weighted penalty with respect to the knot distances. In addition to
the above, we added the possibility to calculate periodic penalties which are based on the periodic
differencing matrices.

Usage

penalty(knots, order, periodic = FALSE, max_diff = 999L)

Arguments
knots Vector of knots.
order Order of the Basis (degree + 1).
periodic Whether the penalties should be periodic or not.

max_diff Maximum difference order to calculate.

https://doi.org/10.48550/arXiv.2201.06808
https://doi.org/10.48550/arXiv.2201.06808

plot.batch

Value

Returns a list of (order - 1) penalty matrices.

Examples

Not run:
Equidistant knots with order 2
knots <- 1:10

P <- penalty(knots, order = 2)
print(PL[1]]) # First differences

Non equidistant knots
knots <- c(@, 0, 0, 0, 1, 3, 4, 4, 4, 4)

P <- penalty(knots, order = 4)

print(PL[1]]) # First differences
print(PL[2]]) # Second differences
print(PL[3]]) # Third differences

Periodic penalty for equidistant knots
oder <- 4

deg <- order - 1

knots <- 1:15

penalty(knots, order = order, periodic = TRUE)[[1]]
penalty(knots, order = order, periodic = TRUE)[[2]]

17

penalty(knots, order = order, periodic = TRUE)[[3]]
End(Not run)
plot.batch Plot method for batch models

Description

Plots the most recent weights in each quantile.

Usage
S3 method for class 'batch'
plot(x, ...)
Arguments
X Object of class inheriting from ’batch’

further arguments are ignored

18 post_process_model

plot.online Plot method for online models

Description

Plots the most recent weights in each quantile.

Usage

S3 method for class 'online'

plot(x, ...)
Arguments

X Object of class inheriting from *online’

further arguments are ignored
post_process_model Post Process Data from conline Class

Description

This function works in conjunction with the conline class. After the main learning task, it takes the
output of the conline class and returns an object suitable for, visualization, further, and deployment.
analysis.

Usage

post_process_model (model_instance, names)

Arguments

model_instance An instance of conline.

names A named list with dimnames of y and experts.

predict.online 19

predict.online Predict method for online models

Description

Calculates predictions based on new expert advice. This does not update weights. If new observa-
tions are available use update instead. The latter updates and weights and computes predictions.

Usage
S3 method for class 'online'
predict(object, new_experts, update_model = TRUE, ...)
Arguments
object Object of class inheriting from *online’
new_experts new expert predictions

update_model Defines whether the model object should be updated or not. If TRUE, new

forecaster and expert predictions are appended onto the respective object items.
Defaults to TRUE.

further arguments are ignored

Value

predict.online produces an updated model object.

print.batch Print method for batch models

Description

Prints the average loss of all and the forecast combination.

Usage
S3 method for class 'batch'
print(x, ...)
Arguments
X Object of class inheriting from ’batch’

further arguments are ignored

20

splines2_basis

print.online Print method for online models

Description

Prints the average loss of all experts and the forecast combination.

Usage

S3 method for class 'online'

print(x, ...)
Arguments

X Object of class inheriting from *online’

further arguments are ignored
splines2_basis Create B-Spline basis

Description

This function creates a B-Spline matrix.

Usage

splines2_basis(x, knots, deg, periodic = FALSE, intercept = TRUE)

Arguments
X Vector of values.
knots Vector of knots.
deg Degree of the Spline functions.
periodic Whether the basis should be periodic or not.
intercept Whether the firs column should be kept.
Value

Returns a matrix of B-Spline basis functions.

summary.online 21

Examples

n<-9

deg <- 3

mu <- 0.35

X <- 0:1000 / 1000

knots <- make_knots(n, mu = mu, deg = deg)

B <- splines2_basis(x, knots, deg)
ts.plot(B, col = 1:dim(B)[2])

Periodic Case
B <- splines2_basis(x, knots, deg, periodic = TRUE)
ts.plot(B, col = 1:dim(B)[2])

summary.online Summary method for online models

Description

Calculates parameters chosen during optimization and aggregates losses.

Usage
S3 method for class 'online'
summary (object, ...)
Arguments
object Object of class inheriting from *online’

further arguments are ignored

tidy.online.experts_loss
Tidy the Experts’ losses of an Online object

Description
tidy will transform the experts_loss array of an online object into a tibble that is better suited
for plotting and analysis.

Usage

S3 method for class 'online.experts_loss'
tidy(x, ...)

22 tidy.online.predictions

Arguments
X The experts_loss of an online object.
Not currently used.
Value

A tibble with columns t d p k and w corresponding to the time, marginals, probabilities, and ex-
perts_loss of the online-learning computation.

tidy.online.forecaster_loss
Tidy the Experts’ losses of an Online object

Description

tidy will transform the ‘forecaster_loss‘ array of an online object into a tibble that is better suited
for plotting and analysis.

Usage
S3 method for class 'online.forecaster_loss'
tidy(x, ...)
Arguments
X The forecaster_loss of an online object.
Not currently used.
Value

A tibble with columns t d p k and w corresponding to the time, marginals, probabilities, and fore-
caster_loss of the online-learning computation.

tidy.online.predictions
Tidy the Predictions of an Online object

Description
tidy will transform the predictions array of an online object into a tibble that is better suited for
plotting and analysis.

Usage

S3 method for class 'online.predictions'
tidy(x, ...)

tidy.online.weights 23

Arguments
X The predictions of an online object.
Not currently used.
Value

A tibble with columns t d p k and w corresponding to the time, marginals, probabilities, and predic-
tions of the online-learning computation.

tidy.online.weights Tidy the Weights of an Online object

Description

tidy will transform the weights array of an online object into a tibble that is better suited for plotting
and analysis.

Usage
S3 method for class 'online.weights'
tidy(x, ...)
Arguments
X The weights of an online object.
Not currently used.
Value

A tibble with columns t d p k and w corresponding to the time, marginals, probabilities, experts,
and weights of the online-learning computation.

update.online Update method for online models

Description

Continues learning using new observations and new expert advice.

Usage

S3 method for class 'online'
update(object, new_y, new_experts = NULL, trace = FALSE, ...)

24 update.online

Arguments
object Object of class inheriting from *online’
new_y new observations
new_experts new expert predictions. This must be left unspecified
trace If a progress bar shall be shown. Defaults to FALSE if the model already con-
tains the expert predictions corresponding to new_y.
further arguments are ignored
Value

update.online produces an updated model object.

Index

* package
profoc-package, 2

autoplot.batch, 3
autoplot.online, 4

batch, 4
conline, 7
init_experts_list, 8

make_basis_mats, 8
make_hat_mats, 9
make_knots, 10

online, 11
oracle, 15

penalty, 16
plot.batch, 17
plot.online, 18
post_process_model, 18
predict.online, 19
print.batch, 19
print.online, 20
profoc-package, 2

splines2_basis, 20
summary.online, 21

tidy.online.experts_loss, 21
tidy.online.forecaster_loss, 22
tidy.online.predictions, 22
tidy.online.weights, 23

update.online, 23

25

	profoc-package
	autoplot.batch
	autoplot.online
	batch
	conline
	init_experts_list
	make_basis_mats
	make_hat_mats
	make_knots
	online
	oracle
	penalty
	plot.batch
	plot.online
	post_process_model
	predict.online
	print.batch
	print.online
	splines2_basis
	summary.online
	tidy.online.experts_loss
	tidy.online.forecaster_loss
	tidy.online.predictions
	tidy.online.weights
	update.online
	Index

